If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2+14y+18=0
a = 1; b = 14; c = +18;
Δ = b2-4ac
Δ = 142-4·1·18
Δ = 124
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{124}=\sqrt{4*31}=\sqrt{4}*\sqrt{31}=2\sqrt{31}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-2\sqrt{31}}{2*1}=\frac{-14-2\sqrt{31}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+2\sqrt{31}}{2*1}=\frac{-14+2\sqrt{31}}{2} $
| 42-5w=w | | 5x=(-5)=35 | | 15x=20x-6x | | 2p-2(4-3p)=5(p-5)-13 | | 6z=1/2z-8) | | -6x-4(-7x-13)=-15 | | -4x+6-2=-24 | | 3(4x+6)=18x+4-6x+14 | | 7x+x−2=14 | | 7u+u−2=14 | | 3x^2-45x=-45 | | 5n−3=4n | | -3r=-2r−7 | | -6u=-7u+2 | | 10-7x=28-3x | | -66=-63(-7-8r)+72r | | -4v+2v=-2 | | 3y−4=14 | | -(8+5n)+3n=-5(n-5) | | -16/3=-2/5d | | x2-x= | | 180=(4x+16)+(2x+34) | | 8(c-4)=-72 | | n-2-7=-15 | | 7x+1=6x+1 | | -7(v+4)+3v+6=6v+7 | | 4|2x-14|+10=18 | | 7+8x-6=1 | | -2-2=(1-b) | | x+(.07x)=58.29 | | -6(v+3)+3v+7=5v+9 | | 16=1/2(7z-6) |